Лазерные источники в проекционном телевидении
В Физическом институте им. П.Н. Лебедева РАН завершен очередной этап разработки эффективных лазеров для проекционного телевидения, связанный с созданием создании источников света – одновременно мощных и миниатюрных — для формирования трехцветных (так называемых RGB) пикселей.
Принцип устройства разрабатываемого лазерного телевизора основывается на логическом развитии электронно-лучевого источника света, в котором слой люминофора заменен на полупроводниковый активный слой в микрорезонаторе. Идея лазерной электронно-лучевой трубки принадлежит советским ученым, сотрудникам ФИАН, Н.Г. Басову, О.В. Богданкевичу и А.С. Насибову. Первый советский лазерный дисплей — «Квантоскоп», разработанный в НИИ «Платан» в сотрудничестве с ФИАН, увидел свет в виде готового устройства еще в конце 1980-х годов. В нем использовались три лазерные электроннолучевые трубки, излучающие в красном, зеленом и синем диапазонах спектра. Это был активный дисплей, в котором изображение формировалось внутри источника света. В каждый момент времени лазерный пучок выходил из того места полупроводникового слоя, куда был направлен электронный пучок. Цветное изображение формировалось путем совмещения трех монохромных изображений на большом внешнем экране. Но это было громоздкое устройство, которое требовало охлаждения полупроводникового слоя до низких температур ( -120оС). Нужно было придумать что-то, что позволило бы достигнуть высокой мощности света при комнатной температуре. Вскоре весь мир пошел по другому пути — создания светоклапанного устройства наподобие жидкокристаллического затвора или матрицы микрозеркал. Оба этих устройства сейчас довольно успешно работают, но хорошего источника монохроматического света для этих устройств до сих пор нет.
«Сегодня в мощных проекционных устройствах в качестве источника света используются, в основном, дуговые ксеноновые лампы высокого давления. Но КПД ксеноновых ламп около 1%, если сопоставить мощность, которая идет на получение изображения, и ту, что потребляет лампа. Причина кроется в том, что для получения изображения высокого качества необходимо из сплошного спектра лампы «вырезать» относительно узкие линии трех основных цветов: красного, зеленого и синего свечения, а всю остальную мощность излучения лампы, превращающуюся в тепло, надо отводить», — говорит руководитель работы, заведующий Лабораторией лазеров с катодно-лучевой накачкой, доктор ф.-м.наук Владимир Козловский.
Многие компании-производители уже ищут замену ксеноновым лампам, например, некоторые из них пошли по пути использования светодиодов. Но из-за их относительно низкой яркости (по сравнению с лазерными источниками) создание проекторов с потоком в несколько тысяч люмен потребует использования сложной и дорогой оптической системы. Другие пытаются «обуздать» лазерные источники: еще в 2002 году компания Q-peak продемонстрировала лазерный RGB (Red-Green-Blue) источник на основе удвоения и параметрического преобразования частоты твердотельных лазеров с накачкой излучением лазерных диодов. Первый коммерческий лазерный телевизор компании Mitsubishi, появившийся на рынке в 2008, основывается на мощных лазерных диодах, излучающих в красной и синей области спектра. В качестве источника зеленого излучения там используется вторая гармоника твердотельного лазера с накачкой лазерными диодами. Однако эти системы также не без минусов, и главный из них — высокая стоимость.
«Сегодня считается, что рынок пойдёт в сторону пикопроекторов, то есть проекторов, совмещенных с сотовыми телефонами, — продолжает Владимир Козловский. — Как предполагается, такой проектор будет либо уже встроен в сотовый телефон, либо будет иметь приставку к сотовому телефону. Это значит, что всю информацию с мобильника мы сможем проецировать на любой вид бумаги или, скажем, стену. Но и здесь есть трудности: нужной мощности лазеры уже есть, но они потребляют очень много энергии — ни одна батарейка с ними работать не может. Надо улучшать характеристики этих лазеров — над чем сейчас многие и работают. И все эти работы базируются на разработке полупроводниковых наностуктур с квантовыми ямами или квантовыми точками, которые могли бы работать с высокой эффективностью при малых уровнях накачки. Несмотря на растущий интерес к пикопроекторам, мы считаем, что мощные проекторы не потеряли актуальность, в частности, для рекламы и электронных кинотеатров».
Разработка ФИАН направлена на создание лазеров на полупроводниковых наноструктурах с катодно-лучевой накачкой, состоящих из большого числа тонких слоев — квантовых ям, помещенных в пучности одной из мод оптического резонатора. Благодаря такой структуре решаются многие задачи: работа при повышенной температуре, значительное снижение ускоряющего напряжения (до нескольких киловольт) и увеличение срока службы. Кроме того, структура может быть использована в источниках RGB-излучения для малогабаритных LCD и DMD проекторов. Но основное достоинство таких источников заключается в их низкой стоимости по сравнению с аналогами.
В настоящее время сотрудники ФИАНа совместно с коллегами из Института радиотехники и электроники им. В.А. Котельникова РАН, Центра волоконной оптики РАН, Технологического центра Шеффилдского университета (Англия) и компании Principia LightWorks Inc. (США) достигли достаточно высоких характеристик по эффективности красного лазера (на наноструктуре GaInP/AlGaInP). Предложено несколько эффективных вариантов зеленого и синего лазеров (особые ожидания возлагаются на структуры ZnCdSSe/ZnSSe/GaAs (зеленый свет) и ZnSe/ZnMgSSe/GaAs (синий свет). В лабораторных условиях уже созданы лазерные электронно-лучевые трубки на наноструктурах с мощностью 9 Вт на 640 нм (красный свет), 3 Вт на 535 нм (зеленый свет) и 6 Вт на 458 нм (синий свет). Уровень разработки красной трубки близок к промышленному освоению отпаянных приборов (эффективность 10%), осталось подстроить под этот уровень синюю и зеленую трубки. Это предмет следующего этапа разработки, который уже стартовал.
По материалам АНИ «ФИАН-информ»
www.nkj.ru
Принцип устройства разрабатываемого лазерного телевизора основывается на логическом развитии электронно-лучевого источника света, в котором слой люминофора заменен на полупроводниковый активный слой в микрорезонаторе. Идея лазерной электронно-лучевой трубки принадлежит советским ученым, сотрудникам ФИАН, Н.Г. Басову, О.В. Богданкевичу и А.С. Насибову. Первый советский лазерный дисплей — «Квантоскоп», разработанный в НИИ «Платан» в сотрудничестве с ФИАН, увидел свет в виде готового устройства еще в конце 1980-х годов. В нем использовались три лазерные электроннолучевые трубки, излучающие в красном, зеленом и синем диапазонах спектра. Это был активный дисплей, в котором изображение формировалось внутри источника света. В каждый момент времени лазерный пучок выходил из того места полупроводникового слоя, куда был направлен электронный пучок. Цветное изображение формировалось путем совмещения трех монохромных изображений на большом внешнем экране. Но это было громоздкое устройство, которое требовало охлаждения полупроводникового слоя до низких температур ( -120оС). Нужно было придумать что-то, что позволило бы достигнуть высокой мощности света при комнатной температуре. Вскоре весь мир пошел по другому пути — создания светоклапанного устройства наподобие жидкокристаллического затвора или матрицы микрозеркал. Оба этих устройства сейчас довольно успешно работают, но хорошего источника монохроматического света для этих устройств до сих пор нет.
«Сегодня в мощных проекционных устройствах в качестве источника света используются, в основном, дуговые ксеноновые лампы высокого давления. Но КПД ксеноновых ламп около 1%, если сопоставить мощность, которая идет на получение изображения, и ту, что потребляет лампа. Причина кроется в том, что для получения изображения высокого качества необходимо из сплошного спектра лампы «вырезать» относительно узкие линии трех основных цветов: красного, зеленого и синего свечения, а всю остальную мощность излучения лампы, превращающуюся в тепло, надо отводить», — говорит руководитель работы, заведующий Лабораторией лазеров с катодно-лучевой накачкой, доктор ф.-м.наук Владимир Козловский.
Многие компании-производители уже ищут замену ксеноновым лампам, например, некоторые из них пошли по пути использования светодиодов. Но из-за их относительно низкой яркости (по сравнению с лазерными источниками) создание проекторов с потоком в несколько тысяч люмен потребует использования сложной и дорогой оптической системы. Другие пытаются «обуздать» лазерные источники: еще в 2002 году компания Q-peak продемонстрировала лазерный RGB (Red-Green-Blue) источник на основе удвоения и параметрического преобразования частоты твердотельных лазеров с накачкой излучением лазерных диодов. Первый коммерческий лазерный телевизор компании Mitsubishi, появившийся на рынке в 2008, основывается на мощных лазерных диодах, излучающих в красной и синей области спектра. В качестве источника зеленого излучения там используется вторая гармоника твердотельного лазера с накачкой лазерными диодами. Однако эти системы также не без минусов, и главный из них — высокая стоимость.
«Сегодня считается, что рынок пойдёт в сторону пикопроекторов, то есть проекторов, совмещенных с сотовыми телефонами, — продолжает Владимир Козловский. — Как предполагается, такой проектор будет либо уже встроен в сотовый телефон, либо будет иметь приставку к сотовому телефону. Это значит, что всю информацию с мобильника мы сможем проецировать на любой вид бумаги или, скажем, стену. Но и здесь есть трудности: нужной мощности лазеры уже есть, но они потребляют очень много энергии — ни одна батарейка с ними работать не может. Надо улучшать характеристики этих лазеров — над чем сейчас многие и работают. И все эти работы базируются на разработке полупроводниковых наностуктур с квантовыми ямами или квантовыми точками, которые могли бы работать с высокой эффективностью при малых уровнях накачки. Несмотря на растущий интерес к пикопроекторам, мы считаем, что мощные проекторы не потеряли актуальность, в частности, для рекламы и электронных кинотеатров».
Разработка ФИАН направлена на создание лазеров на полупроводниковых наноструктурах с катодно-лучевой накачкой, состоящих из большого числа тонких слоев — квантовых ям, помещенных в пучности одной из мод оптического резонатора. Благодаря такой структуре решаются многие задачи: работа при повышенной температуре, значительное снижение ускоряющего напряжения (до нескольких киловольт) и увеличение срока службы. Кроме того, структура может быть использована в источниках RGB-излучения для малогабаритных LCD и DMD проекторов. Но основное достоинство таких источников заключается в их низкой стоимости по сравнению с аналогами.
В настоящее время сотрудники ФИАНа совместно с коллегами из Института радиотехники и электроники им. В.А. Котельникова РАН, Центра волоконной оптики РАН, Технологического центра Шеффилдского университета (Англия) и компании Principia LightWorks Inc. (США) достигли достаточно высоких характеристик по эффективности красного лазера (на наноструктуре GaInP/AlGaInP). Предложено несколько эффективных вариантов зеленого и синего лазеров (особые ожидания возлагаются на структуры ZnCdSSe/ZnSSe/GaAs (зеленый свет) и ZnSe/ZnMgSSe/GaAs (синий свет). В лабораторных условиях уже созданы лазерные электронно-лучевые трубки на наноструктурах с мощностью 9 Вт на 640 нм (красный свет), 3 Вт на 535 нм (зеленый свет) и 6 Вт на 458 нм (синий свет). Уровень разработки красной трубки близок к промышленному освоению отпаянных приборов (эффективность 10%), осталось подстроить под этот уровень синюю и зеленую трубки. Это предмет следующего этапа разработки, который уже стартовал.
По материалам АНИ «ФИАН-информ»
www.nkj.ru
Источник: журнал MEDIASAT : цифровое ТВ, радиовещание и телекоммуникации
blog comments powered by Disqus
Технологии
Темы форума
Вчера в 22:27
Транспондерные новости 2.8°E - Rascom QAF1R
Вчера в 18:52
Транспондерные новости 4.9°E - Astra 4A
03 декабря 2025
СпортТВ: спутник, кабель, права на трансляции, новые проекты
03 декабря 2025
Дальній прийом FM/УКХ в м.Київ. Антена на Білу Церкву
03 декабря 2025
Дальній прийом FM/УКХ в м.Київ. Антена на Житомир
03 декабря 2025
Дальній прийом FM/УКХ в м.Київ. Антена на Черкаси
03 декабря 2025
Дальній прийом FM/УКХ в м.Київ. Антена на Чернігів
01 декабря 2025
Вижн ТВ. Новости - хорошие и плохие
26 ноября 2025
Транспондерные новости 36,1°E -Express-AMU1/35.9°Е Eutelsat
14 ноября 2025
Транспондерные новости 76.5°E - Apstar 7
14 ноября 2025
Приём и обсуждение 8°W - Eutelsat 8 West B в С Band
29 октября 2025
Транспондерные новости 83°E - Insat 4A / G-Sat 10 / G-Sat 12
28 октября 2025
Приём и обсуждение 15°W - Telstar 12 Vantage в Ku band
26 октября 2025
38,2'e-Paksat MMI
25 октября 2025
Дальний прием FM радио (тропосферный, спорадический,метеоры)
13 октября 2025
Рынок платного ТВ и кризис
12 октября 2025
Дальній прийом FM/УКХ в м.Рокитне, Київська область
04 октября 2025
Спутниковые фиды, временные трансляции
03 октября 2025
Транспондерные новости 66°E - Intelsat 17
28 сентября 2025
Приём и обсуждение 57°E - NSS 12 в Ku band


